

VECTORS IN TWO DIMENSIONS

Unit Outcomes:

After completing this unit, you should be able to;
4 know basic concepts and specific facts about vectors.
\pm perform operations on yectors.

Main Contents

7.1 Introduction to vectors and scalars
7.2 Representation of a vector
7.3 Addition and subtraction of vectors and multiplication of a vector by a scalar
7.4 Position vector of a point

Key Terms
Summary
Review Exercises

INTRODUCTION

From previous grades, you know about measurements of different kinds such as height, weight, temperature, distance, angle measure, area, etc. Such quantities assume real numbers as their measure (with some unit of measurement). For example, the height of a room is 3 m , the weight of a quintal is 100 kg , the distance between two walls in a classroom is 8 m , the temperature of a normal person is $36.5^{\circ} \mathrm{C}$, the area of a triangle ABC is $6 \mathrm{~cm}^{2}$, etc. Not all quantities, however, assume only a single real number as their measure. There are some quantities that assume measures involving directions.
Example Suppose we are in School A, and someone has told us that he studies at a nearby school B that is $d \mathrm{~m}$ away. Do we have enough information to find B? Of course not, because B could be at any point on a circle of radius $d \mathrm{~m}$ centred at A . In addition to the distance, we need to know the direction in order to find B.

There are many physical quantities whose measurements involve both magnitude and direction. These include velocity, force, acceleration, electric or magnetic fields, etc. Such quantities are called vectors. Today vectors have many applications. All branches of classical and modern physics are represented by using the language of vectors. Vectors are also used with increasing frequency in the social and biological sciences. In this unit, you will deal with vectors, in particular vectors in two dimensions.

Historical Note:

Sir William Rowan Hamilton (1805-1865)

The study of vectors started with Hamilton's invention of quaternions. Quaternions were developed as mathematical tools for the exploration of physical space. As quaternions contained both scalar and vector parts, difficulties arose when these two parts were treated simultaneously.
Scientists soon learned that many problems could be dealt with by considering vector parts separately, and the study of vector analysis began.

7.1 INTRODUCTION TO VECTORS AND SCALARS

Group Work 7.1

1 Discuss some quantities that can be expressed completely using a single measurement (with units) .

2 Discuss some quantities that require both size and direction.

In general, there are two types of physical measurements: those involving only magnitude and no direction, called scalars and others involving magnitude and a definite direction, called vectors. In many applications of mathematics to the physical and biological sciences and engineering, scientists are concerned with quantities that have both magnitude and direction. As mentioned above, examples include the notion of force, velocity, acceleration, and momentum. It is useful to be able to express these quantities (vectors) both geometrically and algebraically.

ACTIVITY 7.1

Consider the following quantities and identify whether each is a scalar quantity or a vector quantity.

a Amount of rainfall in mm
c Temperature in a room
e Gravity
g Volume of a solid figure
b Area of a plane figure
d Force of water hitting a turbine
f Acceleration of a motorbike
h Speed of an airplane

Scalar quantities

Definition 7.1

Scalar quantities are those quantities of measures that have only magnitude and no direction. (Simply represented by a real number and a specified unit).

Example 1 The length of a side of a triangle is 4 cm . Since 4 is a real number with no direction the length represents a scalar.
Example 2 The height of Mount Ras Dashen is 4550 metres. Here the height is represented by a single real number. Hence it represents a scalar.
Example 3 The daytime temperature of Mercury rises to $430^{\circ} \mathrm{C}$. Since 430 is a real number, this temperature represents a scalar.

Vector quantities

Definition 7.2

Vector quantities are those quantities of measure that have both magnitude (length) and direction.

Example 4 The velocity of a car is $80 \mathrm{~km} / \mathrm{h}$ in the direction of north. This is a vector.

Example 5 Suppose Helen moves, from A, 10 m to the East [E] and then 7 m to the North $[\mathrm{N}]$ to reach at B. Show, as a vector, Helen's final displacement.

Figure 7.1
Solution: Taken together, the distance and direction of the line from A to B is called the displacement from A to B , and is represented by the arrow in Figure 7.1.

The arrow-head tells us that we are talking about the displacement of Helen from A to B. This is an example of a vector.

7.2 REPRESENTATION OF A VECTOR

ACTIVITY 7.2

1 Discuss algebraic and geometric representations of vectors.
2 Represent the vector $\overrightarrow{\mathrm{OP}}$ geometrically, where O is the origin and $\mathrm{P}=(2,3)$ in the $x y$-coordinate system.
3 Discuss the magnitude and direction of a vector.
4 Find the magnitude and the direction of the vector $\overrightarrow{\mathrm{OP}}$.
5 When are two vectors equal?
A vector can be represented either algebraically or geometrically. Often, the most convenient way of representing vectors is geometrically, where a vector is represented by an arrow or directed line segment.

Figure 7.2

When a vector is represented by an arrow (see $\overrightarrow{\mathrm{OP}}$ above), the point O is called the initial point and P is called the terminal point. Sometimes, vectors are represented using letters or a letter with a bar over it such as \vec{u}, \vec{v}, etc.

Example 1 What does the vector in the following figure represent?

Figure 7.3
Solution: The vector $\overrightarrow{\mathrm{AB}}$ has a length of 7 m and direction of East 30° North [$\mathrm{E} 30^{\circ} \mathrm{N}$] (or a direction of North 60° East [$\mathrm{N} 60^{\circ} \mathrm{E}$]. Its initial point is A and its terminal point is B .
What do you think is the magnitude (length) of a vector and the direction of a yector?
Example 2 The following are examples of vector representation. Can you determine their lengths and directions?
Hint: Use ruler and protractor.

Figure 7.4

Magnitude (length) of vectors

The magnitude (length) of a vector $\overrightarrow{\mathrm{OP}}$ or simply \vec{u} is the length of the line segment from the initial point O to the terminal point P , (the length of the directed line segment).

Notation: Magnitude of vector $\overrightarrow{\mathrm{OP}}$ is denoted as $|\overrightarrow{\mathrm{OP}}|$.

Example 3 Determine the length of the vector $\overrightarrow{\mathrm{OP}}$.

Figure 7.5
Solution: The magnitude of the vector $\overrightarrow{\mathrm{OP}}$ is $|\overrightarrow{\mathrm{OP}}|=\sqrt{5}$ (How?)

Example 4 Determine the length in centimetres of each of the vectors shown in the following Figure 7.6.

Figure 7.6
Example 5 A force of 10 pounds is exerted vertically down to the surface of the earth and a force of 20 pounds is exerted parallel to the surface of the earth from left to right. The geometric representation is

Figure 7.7
Here, notice that the arrows (directed line segments) are drawn with lengths proportional to the magnitudes. The arrow representing 10 pounds is half the length of the arrow representing 20 pounds.

From this, we realize that the magnitude of a vector is represented by the length of the arrow that represents the vector.

Direction of vectors

The direction of a vector is the angle that is formed by the arrow (that represents the vector) with the horizontal line at its initial point (or with the vertical line in the case of compass directions).

Example 6 The direction of the vector \vec{u} from the horizontal line at its initial point, as represented below, is 45°. (or $\mathrm{N} 45^{\circ} \mathrm{E}$)

Figure 7.8

Consider the following pair of vectors \vec{u} and \vec{v}.

a

b

C

d

e

Figure 7.9
What do you observe? Do they have the same length? Do they have the same direction? The two vectors in a have the same length and they have the same direction. The two vectors in b have the same length but they have opposite directions. The two vectors in c have the same length and different directions. The two vectors in d have different length, but they have same direction. And the two vectors in e differ in both length and direction.

Note: 1 If two vectors have opposite directions, they are called opposite vectors.

2 Vectors that have either the same or opposite directions are called parallel vectors.
Example 7 From the vectors given in Figure 7.9 above, a, b and d are parallel vectors.
When we represent vectors by using directed arrows as given above, we can observe similarities or differences in length or direction. What do you observe from the following vectors?

Equality of vectors

Two vectors are said to be equal, if they have the same length and the same direction.
Example 8 The following two vectors, \vec{u} and \vec{v}, are equal since they have the same length and the same direction. The actual location of these vectors is not specified. We call such vectors free vectors.

Figure 7.11

Example 9 In each of the diagrams below, all the vectors are equal.

Figure 7.12

Group Work 7.2

1 Suppose vectors \vec{u} and \vec{v} are equal,
a Can we conclude that they have the same initial point? Why?

b Do they have the same length? Why?
c Do they have the same direction? Why?
2 Suppose vectors \vec{u} and \vec{v} are opposite,
a Can we conclude that they must start from the same initial point? Why?
b Do they have the same length? Why?
c Do they have the same direction? Why?
3 Summarize what you have concluded.

Exercise 7.1

1 Determine the magnitude and direction of each of the following vectors.

Figure 7.13
2 Locate each of the following vectors on a coordinate system.
a $\quad \overrightarrow{\mathrm{OP}}$ whose length is 3 cm and direction is $\left[\mathrm{N} 40^{\circ} \mathrm{E}\right]$.
b $\quad \overrightarrow{\mathrm{AB}}$ whose length is 5 cm and direction is [$\left.\mathrm{S} 45^{\circ} \mathrm{E}\right]$.
c $\quad \overrightarrow{\mathrm{CD}}$ whose initial point is $(1,2)$, length is 3 cm and direction is $\left[\mathrm{N} 60^{\circ} \mathrm{W}\right]$.

3 From the following, identify the paired vectors that are equal, or opposite.

a

b

C

d
e

Figure 7.14

7.3 ADDITION AND SUBTRACTION OF VECTORS AND MULTIPLICATION OF A VECTOR BY A SCALAR

7.3.1 Addition of Vectors

ACTIVITY 7.3

Given below are pairs of vectors $\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{CD}}$. Translate $\overrightarrow{\mathrm{CD}}$ so that its initial point is at the terminal point of $\overrightarrow{\mathrm{AB}}$. Then, how do you express $\overrightarrow{\mathrm{AD}}$ in terms of $\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{CD}}$?

Figure 7.15
1 What is meant by addition of vectors?
2 How would you add vectors?
3 Is the length of the sum of two vectors always equal to the sum of the lengths of each vector? Why?

Suppose you have three cities A, B and C. Assuming you know the distance and direction from A to B and from B to C as shown in Figure 7.16.

If you want to go directly from A to C, what would be the distance and direction?

The first thing to notice is that if the three cities do not lie in a straight line, then the distance from A to C will not be equal to the sum of the distances from A to B and from B to C .

Also, the direction may not be related in a simple or obvious way to the two separate directions.

You will see, however, that the solution is easy if we work with the components of the displacement vectors. Let the components of the vector from A to B in the east and north directions be a and b, and from B to C in the east and north directions be a^{\prime} and b^{\prime}, respectively. Then we can see that the component of the displacement vector from A to C in the east direction is $a+a^{\prime}$, and in the north direction is $b+b^{\prime}$.

Figure 7.17
From this, we can conclude that $\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{AC}}$ or $\vec{a}+\vec{b}=\vec{c}$.
We shall discuss addition of vectors using two approaches: the triangle law and the parallelogram law of addition of vectors.

Group Work 7.3

1 Discuss the Triangle law of vector addition.
2 Discuss the Parallelogram law of vector addition.
3 What relation and difference do both laws have?

Triangle law of addition of vectors
Consider the following (Figure 7.18).
Observe that $\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{AC}}$.

Definition 7.3 Triangle law of vector addition

Let \vec{a} and \vec{b} be two vectors in a coordinate system. If $\vec{a}=\overrightarrow{\mathrm{AB}}$ and $\vec{b}=\overrightarrow{\mathrm{BC}}$, then their sum, $\vec{a}+\vec{b}=\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}$ is the vector represented by the directed line segment $\overrightarrow{\mathrm{AC}}$. That is $\vec{a}+\vec{b}=\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{AC}}$.

ACTIVITY 7.4

1 Consider the following figures. Determine the sum $\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}$ of each pair of vectors.

a

b

c

d

Figure 7.19
By writing the vector addition $\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}$, we are looking for that vector whose initial point is A and whose terminal point is C. This vector $\overline{\mathrm{AC}}$ is sometimes called the resultant displacement.
Vector addition can be done either graphically or by separate addition of vector components. We shall discuss the addition of vector components later in this unit.

Example 1 A car travels 4 km to the North and then $4 \sqrt{3} \mathrm{~km}$ to the East. What is the displacement of the car from A to the final position C ?

Solution:

Figure 7.20
The magnitude $\mathrm{AC}=\sqrt{4^{2}+(4 \sqrt{3})^{2}}=\sqrt{16+48}=\sqrt{64}=8$ and
$\tan (\angle \mathrm{BAC})=\frac{\text { opposite }}{\text { adjacent }}=\frac{4 \sqrt{3}}{4}=\sqrt{3}$. Therefore, $\angle \mathrm{BAC}=60^{\circ}$
So the displacement is the vector $\overrightarrow{\mathrm{AC}}$, which is 8 km in the direction of North 60° East.

Example 2 A person moved 10 m to the East from A to B and then 10 m to the West from B to A. Find the resultant displacement.

Figure 7.21
Solution: Here we see that the person ends up at A , hence his displacement is zero. From this we see that if we have $\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{BA}}$, then the sum of these vectors $\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BA}}$ vanishes in the sense that the initial point and the terminal point coincide. Such a vector is called a null vector and is denoted by $\overrightarrow{0}$ or simply 0 . i.e., $\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BA}}=0$.
Given $\overrightarrow{\mathrm{AC}}$, if \vec{u} is a vector parallel to $\overrightarrow{\mathrm{AC}}$ but in opposite direction, then \vec{u} is said to be an opposite vector to $\overrightarrow{\mathrm{AC}}$. $-\overrightarrow{\mathrm{AC}}$ represents the vector equal in magnitude but opposite in direction to $\overrightarrow{\mathrm{AC}}$. That is, $-\overrightarrow{\mathrm{AC}}=\overrightarrow{\mathrm{CA}}$. Notice that $\overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{CA}}=\overrightarrow{\mathrm{AC}}-\overrightarrow{\mathrm{AC}}=0$
Example 3 The following are all opposite to vector $\overrightarrow{\mathrm{AC}}$.

That is, vectors $\overrightarrow{\mathrm{CA}}, \overrightarrow{\mathrm{DB}}$ and $\stackrel{\rightharpoonup}{\mathrm{FE}}$ are all opposite to $\overrightarrow{\mathrm{AC}}$ (but not equal in magnitude)
Example 4 Consider the vectors $\overrightarrow{\mathrm{AC}}, \overrightarrow{\mathrm{CA}}, \overrightarrow{\mathrm{CB}}$ and $\overrightarrow{\mathrm{AD}}$. Determine the following vectors.
a $\quad \overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{CB}}$
b $\overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{CA}}+\overrightarrow{\mathrm{AD}}$
c $\quad \overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{CB}}+\overrightarrow{\mathrm{BD}}$
d $\overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{CB}}+\overrightarrow{\mathrm{BD}}+\overrightarrow{\mathrm{DA}}$

Solution:
a $\overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{CB}}=\overrightarrow{\mathrm{AB}}$
b $\overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{CA}}+\overrightarrow{\mathrm{AD}}=\overrightarrow{\mathrm{AD}}$
c $\overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{CB}}+\overrightarrow{\mathrm{BD}}=\overrightarrow{\mathrm{AD}}$
d $\overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{CB}}+\overrightarrow{\mathrm{BD}}+\overrightarrow{\mathrm{DA}}=\overrightarrow{0}$

Figure 7.23

Parallelogram law of addition of vectors

In the above, we saw how the triangle law of addition of vectors is applicable where the initial point of one vector is the terminal point of the other. We may sometimes have vectors whose initial point is the same, yet we need to find their sum.

ACTIVITY 7.5

Consider the vectors $\overrightarrow{\mathrm{AC}}$ and $\overrightarrow{\mathrm{AD}}$ as given below.

Figure 7.24
Discuss how to determine $\overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{AD}}$.
From previous discussions you notice that if two vectors have the same length and direction, then they are equal.

In Figure $7.25, \overrightarrow{\mathrm{AD}}$ and $\overrightarrow{\mathrm{CE}}$ are equal. So $\overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{AD}}$ and $\overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{CE}}$ represent the same vector. But, from triangle law, $\overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{CE}}=\overrightarrow{\mathrm{AE}}$

Figure 7.25

Therefore $\overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{AD}}=\overrightarrow{\mathrm{AE}}$.
Now let's see how we can construct a parallelogram and see the sum of two vectors (with the same initial point) as the diagonal of the constructed parallelogram.

Example 5 Given the vectors $\stackrel{\rightharpoonup}{\mathrm{AC}}, \overrightarrow{\mathrm{AE}}, \overrightarrow{\mathrm{AD}}$, $\overrightarrow{\mathrm{AF}}, \overrightarrow{\mathrm{AK}}$ and $\overrightarrow{\mathrm{AG}}$ described in Figure 1,26, determine the following vectors.
a $\overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{AE}}$
b $\overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{AD}}$

C $\overrightarrow{\mathrm{AE}}+\overrightarrow{\mathrm{AD}}$

Solution:
Construct a parallelogram and see that

Figure 7.26
a $\overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{AE}}=\overrightarrow{\mathrm{AF}}$
b $\overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{AD}}=\overrightarrow{\mathrm{AK}}$
c $\overrightarrow{\mathrm{AE}}+\overrightarrow{\mathrm{AD}}=\overrightarrow{\mathrm{AG}}$

Subtraction of vectors

Group Work 7.4

If you have vectors $\overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{BC}}$ and $\overrightarrow{\mathrm{AC}}$ such that $\overrightarrow{\mathrm{AC}}=\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}$
a How would you represent $-\overrightarrow{\mathrm{AB}}$ geometrically?

b Can you show geometrically, that $\overrightarrow{\mathrm{AC}}-\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{BC}}$?
c Discuss vector subtraction, and multiplication of a vector by a scalar.
d How do you represent vector subtraction and scalar multiplication of a vector geometrically?

You have discussed addition of vectors that are geometrically described by placing the initial point of one vector onto the terminal point of the other without changing the magnitude and direction. Now you shall consider the geometric subtraction of vectors.

ACTIVITY 7.6

Consider the following vectors, $\overrightarrow{\mathrm{AC}}$ and $\overrightarrow{\mathrm{AD}}$. What do you think the other vectors in diagrams a, b and c describe?

a

b
Figure 7.27

From addition of vectors, we recall that $\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{AC}}$, from which we can see that $\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{AC}}-\overrightarrow{\mathrm{AB}}$.

Example 6 Describe the vectors $\overrightarrow{\mathrm{BC}}$ and $\overrightarrow{\mathrm{BD}}$ and

C

Figure 7.28 determine $\overrightarrow{\mathrm{CD}}$ in terms of $\overrightarrow{\mathrm{BC}}$ and $\overrightarrow{\mathrm{BD}}$.

Solution: $\quad \overrightarrow{\mathrm{BD}}=\overrightarrow{\mathrm{BC}}+\overrightarrow{\mathrm{CD}}$ from Triangle Law.
Therefore, $\overrightarrow{\mathrm{CD}}=\overrightarrow{\mathrm{BD}}-\overrightarrow{\mathrm{BC}}$.

Figure 7.29

Multiplication of vectors by scalars

ACTIVITY 7.7

Consider a vector $\overrightarrow{\mathrm{AC}}$ and determine,

$$
\text { a } \quad \overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{AC}} \quad \text { b } \quad \overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{AC}} \quad \mathbf{c} \quad-\overrightarrow{\mathrm{AC}}-\overrightarrow{\mathrm{AC}}-\overrightarrow{\mathrm{AC}}
$$

What do you observe? It seems very natural that $\overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{AC}}=2 \overrightarrow{\mathrm{AC}}$. Geometrically this means we are doubling the magnitude (length) of the vector $\overrightarrow{A C}$ without changing the direction.

In the same way if we can have $3 \overrightarrow{\mathrm{AC}}, \frac{1}{2} \overrightarrow{\mathrm{AC}},-\overrightarrow{\mathrm{AC}}$ and $-2 \overrightarrow{\mathrm{AC}}$, then in $3 \overrightarrow{\mathrm{AC}}$ we are tripling the magnitude of $\overrightarrow{\mathrm{AC}}$ and we are taking half of the magnitude of $\overrightarrow{\mathrm{AC}}$ in $\frac{1}{2} \overrightarrow{\mathrm{AC}}$. What do you think $-\overrightarrow{\mathrm{AC}}$ and $-2 \overrightarrow{\mathrm{AC}}$ mean?

If we have $k \overrightarrow{\mathrm{AC}}$ where k is any real number, then depending on the value of k either we are enlarging the vector $\overrightarrow{\mathrm{AC}}$ or we are shortening the vector $\overrightarrow{\mathrm{AC}}$. When $k>0$, the direction of $\overrightarrow{\mathrm{AC}}$ and $k \overrightarrow{\mathrm{AC}}$ are the same, but if $k<0$, then the vectors $\overrightarrow{\mathrm{AC}}$ and $k \overrightarrow{\mathrm{AC}}$ are in opposite directions.

Scalar multiplication of a vector

Definition 7.4

Let $\overrightarrow{\mathrm{AC}}$ be any given vector and k be any real number. The vector $k \overrightarrow{\mathrm{AC}}$ is the vector whose magnitude is k times the magnitude of $\overrightarrow{\mathrm{AC}}$ and,
a the direction of $k \overrightarrow{\mathrm{AC}}$ is the same as the direction of $\overrightarrow{\mathrm{AC}}$ if $k>0$
b the direction of $k \overrightarrow{\mathrm{AC}}$ is opposite to that of $\overrightarrow{\mathrm{AC}}$ if $k<0$.

Example 7 Figure 7.30 shows vector $\overrightarrow{\mathrm{AB}}$ and the result of multiplying it by 2 and the result of multiplying it by -1 .

Figure 7.30

Example 8 Consider the following vectors.

Figure 7.31

$$
\overrightarrow{\mathrm{AB}}=2 \overrightarrow{\mathrm{AC}}, \overrightarrow{\mathrm{AD}}=\frac{1}{2} \overrightarrow{\mathrm{AC}} \text { and } \overrightarrow{\mathrm{AE}}=-2 \overrightarrow{\mathrm{AC}}
$$

Note: If $k \neq 0$, then any vector $\overrightarrow{\mathrm{AC}}$ and $k \overrightarrow{\mathrm{AC}}$ are parallel vectors.

Exercise 7.2

1 Almaz walks 3 m south and then 4.35 m west. What is her displacement from the initial point?
2 Simon moves 2 km West from A and 5 km north towards B. What is the displacement of Simon from A to B?
3 By drawing tip to tail add the following three vectors:
$\vec{u}=25.0 \mathrm{~m}$ north, $\vec{v}=35.0 \mathrm{~m}$ at 45 degrees east of north and $\vec{w}=12.0 \mathrm{~m}$ east.
4 From Figure 7.32, give a single vector to represent the following
a $\quad \overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{CB}}$
b $\quad \overrightarrow{\mathrm{AD}}-\overrightarrow{\mathrm{AC}}$

Figure 7.32
5 If $\vec{u}=20 \mathrm{~m}$ due North and $\vec{v}=10 \mathrm{~m}$ at 30 degrees E of N , find $\vec{u}+\vec{v}$ and $\vec{u}-\vec{v}$.
6 From the vector $\overrightarrow{\mathrm{AC}}$ given here, draw
a $\quad-3 \overrightarrow{\mathrm{AC}}$
b $\quad \frac{4}{3} \overrightarrow{\mathrm{AC}}$
c $\quad 4 \overrightarrow{\mathrm{AC}} \mathrm{d} \quad-\overrightarrow{\mathrm{AC}}$

Figure 7.33

7.4 POSITION VECTOR OF A POINT

Up until now, you have used the geometric representation of vectors. Next, you will discuss components of vectors, and vector operations that include determining magnitude and direction by the use of components of a vector. You will also learn how to use vectors to describe the position of a point in a coordinate system.
Group Work 7.5
1 Consider the following vectors, which are on the $x y$ coordinate system. Move each vector so that their initial points are at the origin.
a How do you differentiate one vector from another?
b The initial point of any of those vectors is $(0,0)$. How do you express their terminal point?

Figure 7.34

2 If $\overrightarrow{\mathrm{AB}}$ is the vector with initial point $\mathrm{A}=(1,2)$ and the terminal point $(3,4)$ what will its terminal point be if its initial point is moved to the origin?
3 If $\bar{v}=\binom{2}{5}$ represents a vector with initial point at the origin, then how do you express \vec{v} in terms of the coordinates $(2,0)$ and $(0,5)$?
From previous discussions, notice that the yectors represented in Figure 7.35 that have different initial points are equal. Of these vectors, the one whose initial point is the origin is called the standard form of the presentation of the vector (or simply, the position vector).

Analytically, we usually express vectors in component form. We do this by considering the vector with the origin as its initial point and write the coordinates of its terminal point as a "column vector". For example, in two dimensions, if $\vec{u}=\overrightarrow{\mathrm{OP}}$, where O is
$(0,0)$ and P is the point (x, y) then $\vec{u}=\binom{x}{y}$.
Note: Such column vectors are written vertically, to distinguish them from coordinates. Its geometric representation is as given below.

Figure 7.36
Since the vector $\vec{u}=\binom{x}{y}$ has $\mathrm{O}(0,0)$ as its initial point and $\mathrm{P}(x, y)$ as its terminal point, its magnitude is $|\vec{u}|=\sqrt{x^{2}+y^{2}}$ which is the length of the directed line from $\mathrm{O}(0,0)$ to $\mathrm{P}(x, y)$.

ACTIVITY 7.8

Consider a vector $\vec{u}=\binom{3}{1}$.
1 Represent it geometrically.
2 Applying the Triangle law of vector addition to determine the components of \vec{u}.
3 Find the magnitude of \vec{u}.
4 Determine the direction of the vector \vec{u}.
Consider the following figure,

Figure 7.37
You can see that the vector \vec{u} can be expressed as sum of the vectors \vec{x} and \vec{y} as $\vec{u}=\vec{x}+\vec{y}$ from the parallelogram law or the Triangle law where vectors $\vec{x}=x \vec{i}$ and $\vec{y}=\stackrel{\rightharpoonup}{j}$ in which $\vec{i}=\binom{1}{0}$ and $\vec{j}=\binom{0}{1}$. From this, when $\vec{u}=x \vec{i}+y \vec{j}$, the x and y in $\vec{u}=x \vec{i}+y \vec{j}$ are called components of \vec{u}.

These components are useful in determining the direction of any vector.

Example 1 Represent the following vector as a position vector.

Figure 7.38
To represent a position vector of $\overrightarrow{\mathrm{AB}}$ we need to construct a vector which has the same length and same direction as the vector $\overrightarrow{\mathrm{AB}}$. That is, we need to construct a vector whose origin is $\mathbf{O}(0,0)$ and whose terminal is $\mathrm{P}\left(x_{2}-x_{1}, y_{2}-y_{1}\right)$ where $\left(x_{1}, y_{1}\right)$ is the initial and $\left(x_{2}, y_{2}\right)$ is the terminal point of the given vector.

Hence the position vector of the vector $\overrightarrow{\mathrm{AB}}$ giyen above is

$$
\vec{u}=\binom{1}{1} \text { or } \vec{u}=\vec{i}+\vec{j} \text { where } \vec{i}=\binom{1}{0} \text { and } \vec{j}=\binom{0}{1}
$$

From this, we can determine the magnitude and the direction of the vector.
Example 2 For the vector given by $\vec{u}=\binom{1}{1}$, its geometric representation is given below. Find the magnitude and direction of the vector.

Figure 7.39
Solution: From this geometric representation and from the trigonometric identities that you discussed in chapter five, we can determine the direction of the vector.
$\tan \theta=\frac{\text { opposite }}{\text { adjacent }} \Rightarrow \tan \theta=\frac{1}{1}=1$. The acute angle whose tangent value is 1 is 45°.
Hence, the direction of the vector is 45°.
The magnitude of the vector is also $|\vec{u}|=\sqrt{(1-0)^{2}+(1-0)^{2}}=\sqrt{2}$
Example 3 Find the position vector of the following vectors whose initial and terminal points are as given below.
a Initial point $(1,2)$ and terminal point $(2,5)$
b Initial point $(-2,3)$ and terminal point $(1,4)$

Solution:

a The position vector \vec{u} of the vector whose initial point is $(1,2)$ and terminal point is $(2,5)$ is $(2-1,5-2)=(1,3)$.
That is, $\vec{u}=\vec{i}+3 \vec{j}$ which will be represented as $\vec{u}=\binom{1}{3}$
b The position vector \vec{u} of the vector whose initial point is $(-2,3)$ and terminal point is $(1,4)$ is $(1-(-2), 4-3)=(3,1)$. That is, $\vec{u}=3 \vec{i}+\vec{j}$ which will be $\vec{u}=\binom{3}{1}$.
The geometric representation of these vectors is given below.

Figure 7.40

Exercise 7.3

1 Write each the following position vectors in
Figure 7.41 as column vectors.
a $\overrightarrow{O A}$
b $\quad \overrightarrow{O B}$
c $\quad \overrightarrow{O C}$
d $\overrightarrow{O D}$

2 The coordinates of some points are as follows

$$
\mathrm{P}(2,5), \mathrm{Q}(-1,-2), \mathrm{R}(0,-4) \text { and } \mathrm{S}(3,-7)
$$

What is the position vector of
a $\quad \mathrm{Q}$ relative to P ?
b \quad relative to S ?

Figure 7.41
c \quad S relative to Q ?

3 The position vector of X relative to Y is $\overrightarrow{\mathrm{YX}}=\binom{2}{-5}$.
a What is the position vector of Y relative to X ?
b If X has coordinates $(-1,3)$, what are the coordinates of Y ?
c If M is the midpoint of $\overrightarrow{\mathrm{XY}}$ what is $\overrightarrow{\mathrm{XM}}$?
d What is the position vector of $\overrightarrow{\mathrm{OM}}$?
4 Represent the vectors, whose initial (I) and terminal points (T) are given below, geometrically on a coordinate system.
a $\quad \mathrm{I}(1,4)$ and $\mathrm{T}(3,2)$
b $\quad \mathrm{I}(-2,2)$ and $\mathrm{T}(1,6)$

5 Determine the position vector of each of the vectors given in Question 4 above.
6 Determine the magnitude and the direction of each of the vectors given in Question 4 above.
addition of vectors
direction of a vector
equality of vectors
magnitude(length of) a vector
parallelogram law of vector addition
position vector scalar quantities subtraction of vectors triangle law of vector addition vector quantities

Summary

1 A scalar is a measure that involves only magnitude and no direction while a vector involves both magnitude and direction.
2 A vector is denoted by a directed arrow. Its length is called the magnitude. The direction it points is called the direction of the vector.
3 Vectors include velocity, force, acceleration, electric or magnetic fields, etc.
4 A vector is represented by an arrow ($\overrightarrow{\mathrm{OP}}$); the point O is called the initial point and P is called the terminal point. Sometimes, vectors are represented by using letters or a letter with a bar over it such as \vec{u}, \vec{v}, etc.

5 The magnitude of a velocity is the speed; the magnitude of a displacement is distance. Thus, speed and distance are scalar quantities.
6 A magnitude is always a positive number.
7 Vectors can be described geometrically or algebraically: geometrically as a directed arrow and algebraically as a column vector.
8 Two vectors are said to be equal if they have the same magnitude and the same direction.

9 If two vectors have same or opposite directions then they are parallel.
10 For any two vectors $\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{BC}}, \overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{AC}}$ (the Triangle law)

11 A vector that has no magnitude and direction is called a zero vector or null vector.
12 The diagonal of a parallelogram is the sum of the side vectors. This is called the Parallelogram Law.
13 Subtraction of vectors $\overrightarrow{\mathrm{AE}}$ and $\overrightarrow{\mathrm{AC}}$, given as $\overrightarrow{\mathrm{AE}}-\overrightarrow{\mathrm{AC}}=\overrightarrow{\mathrm{CE}}$ is the same as $\overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{CE}}=\overrightarrow{\mathrm{AE}}$
14 Multiplying a vector by a scalar k either enlarges or shortens the vector. If $|k|>1$, it enlarges the vector and if $0<|k|<1$ it shortens the vector. If $k>0$, the direction of the vector is unchanged; multiplying a vector by $k<0$ changes the direction of the vector into the opposite direction.
15 If the initial and terminal points of a vector are $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ then its position vector can be calculated as $\mathrm{P}=\left(x_{2}-x_{1}, y_{2}-y_{1}\right)$ and is denoted by $P=\binom{x_{2}-x_{1}}{y_{2}-y_{1}}$.

Review Exercises on Unit 7

1 Describe what is meant by scalar and vector quantities.
2 Write down some examples of scalar and vector quantities.
3 How do you represent a vector geometrically?
4 Sketch a vector whose magnitude is 3 cm in the direction of
a East
b North 30° East

5 Sketch a vector of length 5 cm whose direction is
a North 45° East
b West
c South 20° East

6 When are two vectors parallel?
7 Show, by a diagram, that the sum of two vectors $\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{BC}}$ is $\overrightarrow{\mathrm{AC}}$.
8 If the magnitude of $\overrightarrow{\mathrm{AC}}$ is 4 cm , find the magnitude of
a $\quad 3 \overrightarrow{\mathrm{AC}}$
b $\quad \frac{1}{4} \overrightarrow{\mathrm{AC}}$
c $\quad-\overrightarrow{\mathrm{AC}}$

9 If A is the point (4, -2) and B is the point $(-3,-6)$, what is the position vector of B relative to A ?
10 The position vector of P (relative to the origin) is $\overrightarrow{\mathrm{OP}}=\binom{x}{y}$. If the magnitude of $\overrightarrow{\mathrm{OP}}$ is 5 units, find the set of all possible values of $\binom{x}{y}$, with $x, y \in \mathbb{Z}$.

Table of Trigonometric Functions

\downarrow	sin	cos	tan	cot	sec	CSC	
0°	0.0000	1.0000	0.0000	1.000	90°
$1{ }^{\circ}$	0.0175	0.9998	0.0175	57.29	1.000	57.30	89°
2°	0.0349	0.9994	0.0349	28.64	1.001	28.65	88°
3°	0.0523	0.9986	0.0524	19.08	1.001	19.11	87°
4°	0.0698	0.9976	0.0699	14.30	1.002	14.34	86°
5°	0.0872	0.9962	0.0875	11.43	1.004	11.47	85°
6°	0.1045	0.9945	0.1051	9.514	1.006	9.567	84°
7°	0.1219	0.9925	0.1228	8.144	1.008	8.206	83°
8°	0.1392	0.9903	0.1405	7.115	1.010	7.185	82°
9°	0.1564	0.9877	0.1584	6.314	1.012	6.392	81°
10°	0.1736	0.9848	0.1763	5.671	1.015	5.759	80°
11°	0.1908	0.9816	0.1944	5.145	1.019	5.241	79°
12°	0.2079	0.9781	0.2126	4.705	1.022	4.810	78°
13°	0.2250	0.9744	0.2309	4.331	1.026	4.445	77°
14°	0.2419	0.9703	0.2493	4.011	1.031	4.134	76°
15°	0.2588	0.9659	0.2679	3.732	1.035	3.864	75°
16°	0.2756	0.9613	0.2867	3.487	1.040	3.628	74°
17°	0.2924	0.9563	0.3057	3.271	1.046	3.420	73°
18°	0.3090	0.9511	0.3249	3.078	1.051	3.236	72°
19°	0.3256	0.9455	0.3443	2.904	1.058	3.072	71°
20°	0.3420	0.9397	0.3640	2.747	1.064	2.924	70°
21°	0.3584	0.9336	0.3839	2.605	1.071	2.790	69°
22°	0.3746	0.9272	0.4040	2.475	1.079	2.669	68°
23°	0.3907	0.9205	0.4245	2.356	1.086	2.559	67°
24°	0.4067	0.9135	0.4452	2.246	1.095	2.459	66°
25°	0.4226	0.9063	0.4663	2.145	1.103	2.366	65°
26°	0.4384	0.8988	0.4877	2.050	1.113	2.281	64°
27°	0.4540	0.8910	0.5095	1.963	1.122	2.203	63°
28°	0.4695	0.8829	0.5317	1.881	1.133	2.130	62°
29°	0.4848	0.8746	0.5543	1.804	1.143	2.063	61°
30°	0.5000	0.8660	0.5774	1.732	1.155	2.000	60°
31°	0.5150	0.8572	0.6009	1.664	1.167	1.942	59°
32°	0.5299	0.8480	0.6249	1.600	1.179	1.887	58°
33°	0.5446	0.8387	0.6494	1.540	1.192	1.836	57°
34°	0.5592	0.8290	0.6745	1.483	1.206	1.788	56°
35°	0.5736	0.8192	0.7002	1.428	1.221	1.743	55°
36°	0.5878	0.8090	0.7265	1.376	1.236	1.701	54°
37°	0.6018	0.7986	0.7536	1.327	1.252	1.662	53°
38°	0.6157	0.7880	0.7813	1.280	1.269	1.624	52°
39°	0.6293	0.7771	0.8098	1.235	1.287	1.589	51°
40°	0.6428	0.7660	0.8391	1.192	1.305	1.556	50°
41°	0.6561	0.7547	0.8693	1.150	1.325	1.524	49°
42°	0.6691	0.7431	0.9004	1.111	1.346	1.494	48°
43°	0.6820	0.7314	0.9325	1.072	1.367	1.466	47°
44°	0.6947	0.7193	0.9667	1.036	1.390	1.440	46°
45°	0.7071	0.7071	1.0000	1.000	1.414	1.414	45°
	COS	sin	cot	tan	CSC	sec	\square

MATHEDMAIICS

STUDENT TEXTBOOK

GRADE 9

FEDERAL DEMOCRATIC REPUBLIC OF ETHIOPIA VINISTRY OF EDUCATION

